Check for updates

[2025-3-BE-005]

2중 진공관형 태양열집열기 활용 3종 농축산 바이오매스의 Bio-SRF 전환 연구

김태수¹⁾ · 김태희²⁾ · 김근호^{2)*}

Bio-SRF Conversion Study of Tree Unused Agricultural and Livestock Biomass Using Double Evacuated Tube Solar Collector

Taesoo Kim¹⁾ · TaeHee Kim²⁾ · Geun Ho Gim^{2)*}

Received 31 December 2024 Revised 27 January 2025 Accepted 14 February 2025 Published online 18 March 2025

ABSTRACT This study investigated the thermochemical potential of agricultural and livestock unused biomass and its validity as biofuel using a double-evacuated tube commonly used in solar thermal facilities. The solar double-evacuated tube used here was a double-transmitting structure (Φ 47x1,500 mm) made of 0.8T borosilicate glass and was installed at a height of 1.2 m from the ground surface and an inclination angle of 30°. In addition, an aluminum reflector was applied to increase the internal thermal efficiency. The three biomass used in this study were wood pellets, cow manure, and chicken manure, and conditions equivalent to low-temperature pyrolysis at a maximum level of 300°C were maintained for 9.5 hr of average daily standard irradiance. The feasibility of biofuel was investigated based on the low calorific value (kcal/kg) of three types of biomass. Wood pellets (5,110) showed a calorific value similar to that of medium-calorific coal (coal), and cow dung (3,550) showed a calorific value through low-temperature pyrolysis in a solar double to convert it into Bio-SRF with a higher calorific value through low-temperature pyrolysis in a solar double vacuum tube after compression molding.

Key words Double Evacuated Tube Solar Collector(2중 진공관형 태양열집열기), Thermochemical conversion(열화학적 전환), Unsed biomass(미이용 바이오매스), Bio -SRF(바이오-고형연료), Pyrolysis(열분해)

1. 서 론

2017년 우리 정부는 "재생에너지 3020" 정책을 추진한 이후 태양광 및 풍력을 중심으로 보급되었으며,^[1] 이는 국 내를 포함한 유럽, 중국, 미국과 일본 등 주요국을 대상으

 Researcher, Green Energy Office Solar Energy Team, Green Energy Institute

*Corresponding author: ggh1242@gei.re.kr Tel: +82-61-288-1052 Fax: +82-61-287-8006 로 보급이 확산하고 있으며, 특히 2028년 기준 유럽은 세 계 점유율 50%를 상회할 것으로 전망되고 있다.^[2] 우리나 라의 경우 '23년까지 태양광 23.9 GW 그리고 풍력은 0.1 GW 가량 보급되었으며, 최근 복잡한 인허가, 설치 입지 부 족, 계통 포화 및 주민수용성 저하 등의 부작용으로 당초 2030년까지 보급 목표였던 태양광 46.5 GW 그리고 풍력 14.3 GW 달성 전망이 어둡다.^[3] 또한 태양광 및 풍력발전 과 같은 외부 환경의 영향 혹은 변화에 따른 출력 변동이 큰 변동적 간헐성(Intermittance)으로 보급 용량 증가 시 출

Copyright © 2025 by the New & Renewable Energy

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

¹⁾ Senior Researcher, Yehan Co., Ltd.

력 변동 및 불확실성 문제가 대두되고 있어 재생에너지의 높은 불안전성 보완을 위한 유연성이 높은 발전원이 필요 하다. 따라서 LNG 및 화력발전, 수력과 양수발전 등이 이 를 충당하고 있으나,^[1] 최근 바이오에너지로 대체를 통해 저탄소와 탄소순환경제로의 전환을 주목 하고 있다.

현재 바이오매스(농축산 등 이용 및 미이용 생물자원)는 안정적인 재생에너지 생산을 위한 자원으로써 높은 잠재력 과 "탄소순환경제" 구축을 위해 필수적인 자원이다. 특히 농축산 미이용 바이오매스의 에너지원으로서 재이용은 에 너지 전환을 넘어 자원 순환을 고려한 효과 기대가 가능하 다.^[4] 농축산 미이용 바이오매스를 포함한 다양한 종류의 바이오매스는 열화학적 공정을 통해 바이오에너지 혹은 연 료와 다양한 고부가가치의 유용물질로 자원화가 가능하 다.^[5] 열화학적인 공정의 대표 기술은 연소, 가스화 및 열분 해 등이며, 현재 해당 기술들은 완성도가 높고 실제 사업화 사례가 많으나 대부분 전기 혹은 화석연료 등의 외부 에너 지 사용이 필수적이고 투입되는 바이오매스의 특성에 따라 공정의 유지관리(부식 및 미탄화)문제등의 한계성이 지적 되고 있다.^[6]

반면, 태양열 에너지는 태양광 발전과 마찬가지로 무한 하며 청정한 자연에너지를 활용하여 집열을 통해 온수 및 난방으로 이용된다. 여기에 별도 외부에너지(혹은 연료) 투 입이 필요가 없어 화석연료를 사용하는 보일러보다 열 효 율은 비교적 낮지만 저탄소 친환경 기술이다. 일반적으로 농가와 가정에 보급된 이중 진공관형 태양열 설비의 청명 한 날 진공관 내부 온도는 180~300°C로 이는 저온 열분해 (Low-temperature Pyrolysis) 영역인 250~325°C에 만 족된다.^[7]

이에 본 연구에서는 기존에 국내 및 국외에서 사용되고 있는 태양열 설비에 설치된 2중 진공관의 저온-열분해 조건 을 확인하고 3종(우드 펠릿, 우분 및 계분) 바이오매스를 대 상으로 저탄소 및 친환경 Bio-SRF 전환 연구 수행하였다.

2. 재료 및 방법

2.1 3종 바이오매스

본 연구에서 사용한 바이오매스는 총 3종으로 ① 잣나무

의 우드 팰릿(20~30 mm x Φ 6 mm, 함수율 7.6 wt.%), ② 칩(Chip) 형태의 건조(함수율 14.6 wt.%)된 우분 그리 고 ③ 건조(함수율 15.5 wt.%)된 분말형태의 계분을 각각 선별하여 사용하였다. 해당 3종 바이오매스는 태양열 2중 진 공관의 Bio-SRF 생산을 위한 열화학적 전환(저온-열분해) 타당성 검토을 위한 대표 원료로 선정하였다. 또한 2중 진공 관 내부에서 저온-열분해를 위해 각 바이오매스 500 g(D.W.) 을 투입하였다.

2.2 태양열 설비와 2중 진공관 장치

3종의 바이오매스를 대상으로 열화학적 전환 연구를 위 해 사용된 태양열 설비는 높이 1.2 m x 길이 6 m x 폭 1.6 m의 규격으로 2중 진공관을 병렬로 설치 하여 광주광역시 북구 첨단연신로288번길 50(35.20145, 126.8573)의 옥상 에 경사각 30°로 하여 설치하였다(Fig. 1 참조). 또한 바이 오매스의 열화학적 반응이 일어나는 2중 진공관의 구성 및 세부사항은 Fig. 2 및 Table 1과 같으며, 또한 2중 진공관 내부에 원료 투입 시 일정한 위치에서 열화학적 반응을 유 도하기 위해 Fig. 2와 같이 내·외부 스페이서를 추가로 설 치하였고 바이오매스를 회분식으로 500 g씩 투입 후 공기 유입을 차단하기 위해 완벽히 패킹하였다. 그리고 본 설비

Fig. 1. Solar thermal system used in this study

Table 1. Specifications of dual evacuated tube

Characteristics	Specifications				
Texture	Borosilicate glass				
Thickness	0.8 mm				
Size	$\Phi47\times1500~\mathrm{mm}$				
Light transmittance	92.5%				
Coating layer	Φ 33.8 \times 1320 mm				
Light Absorption Rate	94%				
Emissivity	6%				

Fig. 2. Dual evacuated tube configuration and thermal decomposition concept of solar thermal system

Fig. 3. Concept of real-time system for irradiation & temperature in double evacuated tube

의 2중 진공관의 내부 온도와 일사량 데이터를 실시간 모니 터링하기 위해 센서를 각각 설치하여 1분마다 내부 온도를 수집하였다(Fig. 3 참조).

위와 같이 설치된 설비에 3종의 바이오매스를 각각 주입 하여 열화학적 반응 시험은 2024년 9월~10월 중 정오 기준 당일 일사량 400 Wh/m² 이상 유지되는 일조시간 약 9.5시 간 동안 실험을 추진하였으며, ① 2중 진공관 내부 온도의 저온 열분해 타당성 검증을 위한 진공관 후면에 적외선 반 사 필름과 알루미늄 재질의 반사판 효과를 비교하고 ② 3종 의 바이오매스 대상 평균 일사량 400 Wh/m²에서 일조시 간 약 6.0, 9.5, 12.0, 15.0시간 동안 탄화물의 바이오매스 중량(wt.%) 및 수분함량(wt.%) 비교 분석 그리고 ③ 3종 바이오매스별 탄화물의 품질 분석 등을 추진하였다.

2.3 바이오매스별 열화학적 전환 시험분석

본 연구의 대상 원료인 우드 펠릿, 우분 및 계분의 열화 학적 전환 공정 전 열중량 특성을 조사하기 위해 열분해 온 도 분석(TGA)을 추진하였다.

또한 2중 진공관 내부 열화학적 전환 공정 이후 3종 바이 오매스의 특성 분석을 위해 반응 전후 각 시료별 원소(C, H, O), 공업분석(수분, 회분, 휘발분 및 고정탄소) 그리고 저위 및 고위 발열량을 각각 분석하였다. 여기서 시료의 수 분, 원소분석 그리고 저위·고위 발열량은 환경부고시 제 2020-219호, 회분과 휘발분은 ASTM D7582-15, 고정탄 소는 ASTM D3172-13에 의거하여 분석을 추진하였다.

3. 결과 및 고찰

3.1 2중 진공관 내부 온도 검증

2중 진공관에서 바이오매스의 열화학적 반응의 타당성을 알아보기 위해 2024년 9월 중 일사량 400 Wh/m²일때 진 공관 내부 온도는 최대 230°C를 유지하였다. 이후 해당 진 공관 후면에 적외선 반사 필름과 알루미늄 재질의 반사판 을 각각 설치 후 진공관 내부 온도를 조사한바(Fig. 4 참조), 알루미늄 반사판을 적용한 진공관의 내부온도가 최대 298°C 수준을 유지하였으며, 해당 조건에서 3종 바이오매스의 Bio-SRF 전환을 위한 저온 열분해 검증을 추진하였다.

Fig. 4. Investigation of temperature changes inside a dual evacuated tube under different irradiation

이는 저온 열분해(Low-temperature Pyrolysis) 영역인 250~325°C 수준으로 판단 되며,^[7] 이번 시험은 추계 시기 로 추후 보다 높은 일사량이 확보된 조건에서 저온 열분해 를 추진 시 예상 일사량이 최소 800 Wh/m² 이상이 예상되 고^[8] 이때 반사판이 적용된 2중 진공관의 내부 온도는 저온 열분해 온도영역을 충분히 만족할 것으로 판단된다.

3.2 3종 바이오매스의 열분해 온도 분석

본 연구의 대상 바이오매스인 우드 팰릿, 우분 및 계분의

열분해 온도(TGA)는 다음과 같다(Fig. 5 참조); 우드 팰릿 은 314, 우분은 253°C 그리고 계분의 경우 227°C로 조사되 었으며, 알루미늄 반사판이 적용된 진공관에 3종의 바이오 매스 모두 저온 열분해 조건에서 열화학적 전환 반응이 가 능한 것으로 판단된다.

일반적으로 바이오매스의 열분해 과정은 3가지의 주요 영역으로 구분되며, ~120°C영역은 수분, 가벼운 휘발성 물 질 제거, 220~315°C는 Hemicellulose, 315~400°C영역은 Lignin과 Cellulose가 분해되는 과정으로 구분된다.^[9,10] 본 연 구 대상 설비를 통해 Lignin과 Cellulose계 바이오매스 보다 Hemicellulose계 바이오매스 즉, 축분 바이오매스가 보다 적 합한 설비로 예상된다. 물론 추후 진공관 내부 온도를 상승 시키는 설비 개선, 일사량 및 일조시간 개선 등을 통해 보다 단단한 바이오매스 역시 적용이 가능할 것으로 판단된다.

3.3 2중 진공관의 저온 열분해 시간 최적화

2024년 9월중 일조시간 최적 일사량인 약 400 Wh/m² 일 때 3종의 바이오매스별 저온 열분해 시간을 최적화를 대 상 바이오매스의 열분해 전후 중량 차이(wt.%)로 비교하였 다. Fig. 6과 같이 대상 바이오매스 모두 9.5시간 이후 열 분해 반응은 종료되는 것으로 판단되며, 여기서 3종 모두 바 이오매스 중량 감소가 70%(D.W.)를 상회하였다. 또한 열분 해 9.5시간 후 각 바이오매스별 수분함량(wt.%)은 Table 2 와 같이 1%(wt) 이하로 감소하였다.

여기서 9.5시간은 당시 최적 일사량인 400 Wh/m²이 조 사 된 시간을 열분해 시간으로 간주한 시간이며 이때 총 반 응시간은 약 2일이 소요되었다.

Fig. 6. Comparison of low-temperature pyrolysis times using dual evacuated tube for three biomass (at 400 Wh/m²)

3.4 3종 바이오매스별 탄화물의 품질 분석

Table 2. Analysis of properties of three biomass

앞선 실험을 통해 2중 진공관 내부의 저온 열분해를 통 해 생산된 탄화물들의 원소 및 공업 분석 결과는 Table 2와 같으며, 이에 대한 탄소에 대한 산소와 수소의 Molar ratio 와 저위 및 발열량의 열분해 전후 결과는 Table 3과 같다.

					(1	Unit:	wt.%)			
	Ele	ments Analy	Proximate Analysis							
	Carbon	Hydrogen	Oxygen	Moist.	V.M.	Ash	F.C.			
Wood pellet										
Biomass	51.30	6.06	42.16	7.6	77.6	0.3	14.5			
Pyrolysis	57.70	5.59	36.11	0.7	71.9	0.5	26.9			
Cow manure										
Biomass	31.80	5.42	37.24	14.6	47.2	23.5	14.7			
Pyrolysis	40.00	3.74	16.18	0.5	39.7	37.2	22.6			
Chicken manure										
Biomass	24.69	4.91	33.82	15.5	44.4	32.9	7.2			
Pyrolysis	30.78	3.05	16.51	0.8	43.7	44.2	11.3			

Pyrolysis	30.70	5.05	10.51	0.0	43.7	44.2	п.э

lab	le	З.	Analysis	ot	tuel	properties	atter	pyroly	/SIS	ot	three
			biomass								

O/C ratio (mol/mol)			H/C ratio (mol/mol)			Low-heating value (kcal/kg)			
Before	After	%	Before	After	%	Before	After	%	
Wood pellet									
0.723	0.477	-34.0	1.633	3 1.179 -27.8		4,180	5110	22.0	
Cow manure									
0.878	0.313	-64.4	2.045	1.14	-44.3	2690	3550	32.0	
Chicken manure									
1.027	0.419	-59.2	2.386	1.222	-48.8	1880	2520	34.0	

자원의 절약과 재활용 촉진에 관한 법률 시행규칙(2020. 5 27)에 따르면 바이오 고형연료(Bio-SRF)제품의 수분(성 형 10 이하 & 비성형 25 이하)과 회분(15 이하) 함유량(wt.%) 그리고 저위 발열량(제조 제품 3.000 kcal/kg 이상)의 기 준^[11]과 비교한바. 우드 펠릿의 경우 3가지 기준에 대해 모 두 만족한 결과를 보였으나, 우분은 수분과 저위 발열량이 위 제시한 기준에 만족하였으나. 계분과 함께 회분량이 국 내 바이오 고형연료 기준 대비 2배 이상 상회하였다. 하지 만 가축분뇨 고체연료의 성분 등에 관한 기준(2016. 6. 2) 에 본 연구의 우분과 계분을 비교한 바. 우분의 경우 회분 30%(wt.)이하의 조건을 제외한 저위 발열량(3,000 kcal/kg 이상)과 수분(20% wt. 이하)의 기준에 만족하였다.^[12] 이는 이성현 등의 우분의 고형 연료화를 위한 특성 분석 연구 결 과^[13]와 비슷한 경향을 보이며 추후 우분을 대상으로 충분 한 건조를 통한 수분함량을 낮추고 일정한 규격으로 성형 후 본 설비를 이용하면 보다 높은 품질의 바이오 혹은 축분 고형연료로 전환이 기대된다.

반면 계분의 경우 위 제시한 바이오 혹은 가축분뇨 고형 (체)연료 기준에 만족하지 못하였다.

한편 농업부산물의 열처리를 통한 바이오 연료 생산 시 해당 탄화물의 O/C ratio가 감소하는 경향을 보였다.^[11] 위 선행연구와 같이 본 연구의 대상 바이오매스 모두 2중 진공 관의 약 230°C 및 약 10시간 내외의 조건에서 저온 열분해 반응이 진행됨에 따라 우드 펠릿은 34%, 우분은 64% 그리 고 계분은 59%가량 산소와 탄소 간 Molar ratio 감소하는 경향을 보였다.

또한 본 설비 활용 다양한 농축산 바이오매스의 탄화물 로 전환 기술을 확보하고 이를 석탄 대체 가능성을 검토를 한 바, 일반적으로 석탄은 고열량탄, 중열량탄 그리고 저열 량탄으로 구분하며, 각 종류에 따라 저위 발열량의 기준은 다음과 같다; 고열량탄은 5,500 kcal/kg 이상, 중열량탄은 5,000 kcal/kg~5,500 kcal/kg 미만 그리고 저열량탄은 5,000 kcal/kg 미만으로 분류가 되며,^[12,13] 본 연구에서 생 산 된 우드 펠렛의 저위 발열량은 5,110 kcal/kg로 중열량 탄의 석탄 수준으로 판단된다.

4. 결 론

본 연구에서는 기존 태양열 설비의 2중 진공관을 저온 열분해 반응조로 활용하여 농축산 바이오매스를 대상으로 바이오 고형연료 혹은 중열량의 석탄 생산이 가능한 기술 을 확보하고자 하였다.

2중 진공관이 적용된 기존 태양열 설비를 활용하여 최소 400 Wh/m²의 일사량이 확보된 조건에서 2중 진공관 내부 온도가 저온 열분해 온도(최대 약 298°C)를 약 2일간(일조 시간 9.5시간) 우드 펠릿과 우분 및 계분의 탄화물을 생산 하고 이에 대한 설비와 탄화물의 품질을 평가하였다.

우드 펠릿의 경우 국내에서 제시한 바이오 고형연료 기 준과 국내 중열량의 석탄의 발열량 수준에 만족하는 탄화 물 생산이 가능하였으며, 우분의 경우 저위 발열량(3,500 kcal/kg)이 중열량탄의 수준에 미달하였으나 바이오 고형 연료 기준에 부합되는 탄화물을 확인하였다.

우분은 가축분뇨 고체연료의 성분 등에 관한 기준에 대 해 저위 발열량과 수분 조건에 만족하였으나 회분은 제시 된 기준(30 wt.% 이하)을 다소 상회하는 결과를 보였다.

본 연구를 통해 보단 안정적이며 높은 일사량 확보가 가 능한 하계기간을 선택하거나 혹은 집광 설비를 개선하고 축분 바이오매스의 성형 후 열분해 과정에 투입하는 등의 추가 연구를 진행하여 태양열을 이용하여 높은 품위의 바 이오연료로 전환 기술 확보가 가능할 것으로 판단된다.

감사의 글

본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학협력 기반 지역혁신 사업 (2021-RIS-002)의 결과입니다.

References

 Jang, H., and Jo, J., 2019, "Economic analysis of flexibility facilities in the era of energy transition with increasing renewable energy generation share", Korea Energy Economics Institute (KEEI), 7, 1-79, https://www.keei.re.kr/pdfOpen. es?bid=0001&list no=81922&seq=1.

- [2] International Energy Agency (IEA), 2024, "Renewables 2023-Analysis and forecasts to 2028", https://iea.blob.core. windows.net/assets/96d66a8b-d502-476b-ba94-54ffda84c f72/Renewables 2023.pdf.
- [3] Ministry of Trade, Industry and Energy, 2024, "Strategy to expand renewable energy supply and strengthen supply chain", https://www.korea.kr/docViewer/skin/doc.html?fn=4a18e 80f951067ebd5d7502ad561efeb&rs=/docViewer/result/2 024.05/16/4a18e80f951067ebd5d7502ad561efeb.
- [4] Jo, J., Lee, C., Shin, D., Ko, I., and Kim, S., 2021, "Developing a circular economy policy roadmap for achieving carbon neutrality", Korea Environment Institute (KEI), 1-325, https://scienceon.kisti.re.kr/commons/util/originalView.d o?cn=TRKO202200017650&dbt=TRKO&rn=.
- [5] Lee, D., Kang, T., Kim, H., Lee, J., Lee, Y., Lee, S., and Kang, S., 2022, "Review of torrefaction technology for utilization of unused herbaceous biomass", J. of Environmental & Energy Engineering, **17**(2), 55-71.
- [6] Han, D., Yeom, K., Park, S., Cho, O., and Baek, Y., 2017, "A study on the manufacture of Bio-SRF from the food waste by hydrothermal carbonization(HTC) process", Journal of Hydrogen and New Energy, 28(4), 426-432.
- [7] Nobre, C., Şen, A., Durão, L., Miranda, I., Pereira, H., and

Gonçalves, M., 2021, "Low-temperature pyrolysis products of waste cork and lignocellulosic biomass: product characterization", Biomass Convers. Biorefin., **13**, 2267-2277.

- [8] Sanchez-Silva, L., López-González, D., Villaseñor, J., Sánchez, P., and Valverde, J.L., 2012, "Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis", Bioresour. Technol., **109**, 163-172.
- [9] Yang, H., Yan, R., Chen, H., Lee, D.H., and Zheng, C., "Characteristics of hemicellulose, cellulose and lignin pyrolysis", Fuel, 86(12-13), 1781-1788.
- [10] Ministry of Environment Ordinance, 2024, "Enforcement regulations of the act on promotion of resource conservation and recycling".
- [11] Kim, J.S., Song, G-S, Park, J.H., Noh, Y-H., Choi, Y., Jeon, C-H., and Lee, Y-J., 2024, "Researching optimal heat treatment conditions for the conversion of agriculture residue into high-calorie value fuels and biochar", J. of Environmental & Energy Engineering, 19(1), 39-54.
- [12] Ministry of Economy and Finance, 2022, "Individual consumption tax law".
- [13] Jung, H-R., 2022, "Greenhouse gas reduction methods in coal power plants through analysis of CO₂ emissions by coal calorific value", J. Clim. Change Res., **13**(4), 491-500.