

[2017-9-PV-001]

선택적 캐리어 수집을 위한 터널 산화막을 이용한 결정질 실리콘 태양전지

한상욱¹⁾ · 심경배¹⁾ · 박수영¹⁾ · 안시현¹⁾ · 박철민²⁾ · 조영현¹⁾ · 김현후³⁾ · 이준신^{1)*}

A Study on Crystalline Silicon Solar Cells Using Tunnel Oxide Layer for Carrier Selective Contacts

Sanguk Han¹⁾ · Gyungbae Shim¹⁾ · Sooyoung Park¹⁾ · Shihyun Ahn¹⁾ · Cheolmin Park²⁾ · Hyunhoo Kim³⁾ · Younghyun Cho¹⁾ · Junsin Yi^{1)*}

Received 25 May 2017 Revised 19 September 2017 Accepted 20 September 2017

ABSTRACT In silicon solar cells, the doping process is performed to form a Back Surface Field (BSF) layer and is followed by many other processes. In this study, phosphorus doped a-Si:H doped at a high concentration in the tunnel oxide layer was crystallized through furnace annealing and Excimer Laser Annealing (ELA), in order to apply it to the Polycrystalline (Poly) - BSF layer in the Tunnel Oxide Passivated Contact (TOPCon) structure. In the excimer laser annealing fabrication process, an XeCl excimer laser with a wavelength of 308 nm was used, and the thickness of the a-Si layer and energy density of the laser were varied from 20 to 40 nm and from 390 to 450 mJ/cm², respectively. The highest carrier lifetime and implied V_{oc} were found to be 588 μ s and 697 mV, respectively, at an a-Si thickness of 20 nm and energy density of the laser of 450 mJ/cm². The TOPCon cell was fabricated using wet oxidation and plasma oxidation. Its efficiency and FF were found to be higher when fabricated using the wet process, with values of 19.41% and 74.8%, respectively, while its V_{oc} and J_{Sc} values were higher when it was fabricated using plasma oxidation, with values of 41.04 mJ/cm² and 644 mV, respectively. Therefore, if the conditions providing for a high implied V_{oc} and carrier lifetime and sufficient crystallization were found, the efficiency of n-type TOPCon solar cells could be increased.

Key words BSF(후면전계층), ELA(엑시머레이저어닐링), Crystallization(결정화), TOPCon(전하선택적수집), Crystalline silicon solar cell(실리콘태양전지)

1. 서 론

화석 연료(석유, 석탄 및 천연가스)는 현재 세계 에너지 생산의 80% 이상을 차지하는 주요 에너지원이다^[1]. 하지만 화석 연료는 지구 온난화와 기후 변화의 주요 원인인 온실

- College of Information and Communication Engineering, Sungkyunkwan University
- 2) Department of Energy Science, Sungkyunkwan University
- 3) Department of Display Engineering, Doowon Technical University

*Corresponding author: junsin@skku.edu Tel: +82-31-290-6571 Fax: +82-31-290-6570 가스의 배출로 인해 공급이 제한되고 환경에 매우 유해하 다. 그러므로 미래에는 환경에 유해하지 않으면서 화석 연 료를 대체할 수 있는 에너지 개발이 필수적이다^[2]. 태양광 에너지는 환경에 유해한 영향이 없이 태양빛을 전기로 변환 하기 때문에 주요한 대체 에너지로 성장하고 있다^[3]. 고효 율의 실리콘 태양전지를 제작하기 위해서는 조사된 빛에 의 해 생성된 Electron-Hole Pair(EHP)의 재결합손실을 최소 화 하는 것이 필수적이다. 25%의 효율을 달성한 Passivated Emitter, Rear Locally diffused(PERL) 태양전지는 열 산화공정을 이용하여 전후면 passivation을 상승시키고 선

Copyright © 2017 by the New & Renewable Energy

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

택적 도핑공정을 통하여 금속 재결합을 감소시켰다. 그리 고 point contacts 방식을 이용하여 B-diffused emitter 로 교체한 passivated contacts는 탁월한 캐리어의 선택 적 수집 및 1차원 캐리어의 움직임 패턴으로 인해 715mV 의 높은 Voc 및 82.1%의 매우 높은 충진률(Fill Factor. FF)을 가능하게 했다^[4-5]. 그러나 현재 PERL 태양전지는 부분적인 금속 접촉과 고농도로 도핑된 영역에 의해 재결합 손실이 발생한다. 캐리어 선택적 수집 접합은 흡수영역 외 부의 도핑 되거나 금속화된 영역을 분리하거나 대체할 수 있는 기회를 제공하고 더 높은 개방전압을 발생시킬 수 있 다. 이러한 예 중 가장 대표적인 구조가 Heterojunction with Intrinsic Thin layer(HIT) 구조 태양전지인데 매우 얇은 진성 비정질 실리콘층이 도핑 된 비정질 실리콘층과 금속화된 영역을 흡수영역 외부에서 분리하여 실리콘 표면 에서의 우수한 passivation 특성을 제공한다. 하지만 HIT 태양전지에서의 비정질 실리콘층은 열에 매우 취약하여 셀 의 온도가 200℃ 이상이 되면 a-Si:H이 분해되기 시작하 여 무수한 dangling bonds가 형성되고 광 생성된 캐리어 들의 재결합을 유발한다. 그렇기 때문에 HIT 태양전지는 모 든 공정을 저온공정으로 진행해야 하는 큰 단점이 있다. 이 러한 단점을 보안하기 위해 Semi-Insulating POlySilicon (SIPOS)를 적용하였는데 이는 실리콘 소자에서의 passivation 층으로써 사용되었다^[6]. 태양전지에서의 SIPOS 적용은 Yablonovitch에 의해 입증 되었으며 720mV의 안정적인 개방전압을 달성하였다^[7]

TOPCon구조는 열 처리시 부분적으로 결정화 되는 poly-BSF 층과 1.5nm 이하의 매우 얇은 터널 산화막으로 구성

Fig. 1. Prevention of EHP recombination through selective collection of electron

되고 Quantum-tunneling 효과로 인해 전자의 선택적 수 집이 가능하여 광 생성된 EHP의 재결합 방지를 통한 태양 전지의 효율 향상에 기여한다.

Fraunhofer ISE는 전면에는 boron doped selective emitter, 후면에는 tunnel oxide passivation을 적용한 4cm²크기의 셀로 24.9%의 효율과 718mV의 V_{oc}를 달성하 였다^[8].

최근에는 터널 산화막을 이용한 전자의 선택적 수집뿐만 아니라 Transition Metal Oxide(TMO)를 이용한 정공의 선택적 수집 연구도 활발히 이루어지고 있다^[9]. 이를 응용 하여 결정질 실리콘 태양전지에 적용한다면 재결합의 방지 에 의한 carrier lifetime의 상승과 태양전지의 효율향상 에 큰 기여를 할 것으로 판단된다.

Fig. 2. Conventional structure of TOPCon solar cell

2. 실험 방법

2.1 BSF의 결정화

Poly-BSF를 형성하는 방법은 크게 열처리를 이용한 결 정화 FA와 excimer laser를 이용한 결정화 ELA가 있다. 먼저 단일막 테스트를 위해 두께 200nm의 일반적인 태양 전지 웨이퍼를 준비한 뒤 표면의 polishing을 위해 Saw Damage Removal(SDR) 공정(NaOCl : Di-water: NaOH = 10:10:1)을 진행하였다. 그 다음 PECVD 또는 acid chemical 용액을 이용하여 양면에 매우 얇은 산화 막(1.4nm)을 성장 시켰다. 그 후 poly-BSF를 형성하기 위해 PECVD를 이용 하여 양면에 a-Si:H 를 중착 하였다. 이 때 가스비는 SiH4 과 PH₃는 1:1 비율로 고정하고 H₂의 비를 가변 하여 실험 을 진행하였고 막의 두께는 20nm~40nm까지 가변 하여 실험을 진행하였다. 마지막으로 poly-Si을 형성하기 위해 FA와 ELA를 이용하여 결정화 하였다. Fig. 3은 가스비 영 역에 따른 결정화 영역을 나타낸다^[13].

먼저 열처리 온도는 200℃~900℃. 시간은 30분~90분 으로 각각 가변 하였다. 열처리 온도가 900℃를 넘어가면 tunnel oxide layer가 부분적으로 파괴되어 (SiO_{2(s)}+Si_(s)= SiO(g) passivation 효과가 감소하므로 900℃ 까지만 열 처리 온도를 증가시켜 실험을 진행하였다^[10]. 그리고 ELA 를 진행하기 전에 막 내에 존재하는 수소를 모두 제거해주 는 탈수소화 공정을 진행해야 한다. 막에 laser를 조사하게 되면 laser의 에너지에 의해 막 내에 존재하는 수소가 밖으 로 확산하게 되고 이 과정에서 막 내에 공백이 생기거나 막 이 벗겨지는 peeling 현상이 일어나게 된다. 탈수소화 공정 은 Rapid Thermal Process(RTP) 장비에서 450℃, 60분 동안 진행하였다^[11]. 레이저 종류는 파장 308nm인 XeCl excimer laser를 사용하였고 에너지 밀도는 390mJ/cm²~ 450mJ/cm²까지 가변 하였다. 막의 두께는 20nm~40nm로 이전 실험과 동일하게 진행하였다. 그리고 막 내의 dangling bonds를 없애기 위해 Forming Gas Annealing(FGA) 공 정을 진행한 뒤 Quasi-Steady-State PhotoConductance (QSSPC)를 이용하여 carrier lifetime과 implied Voc를 측정하였다. 그 후 결정화도를 측정하기 위해 ramanspectroscopy를 이용하였고 elipsometry(VASE, J. A. Woollam 240nm 〈 λ 〈 1700nm) 를 이용하여 막의 두께 와 결함을 측정하였다^[9].

2.2 고효율의 TOPCon solar cell 제작

단일막 시험용 웨이퍼와 마찬가지로 두께 200µm의 웨 이퍼를 SDR 공정 후 수광부에서의 태양광을 최대한 흡수 하기 위해 표면을 texturing 하였다. 그리고 전면 emitter 를 형성할 때 BBr₃ 확산 도핑을 진행하였는데 후면까지 counter doping되는 것을 막기 위해 후면에 nitride barrier 를 증착 한 뒤 공정을 진행하였다. Emitter를 형성하고 난 뒤 후면의 nitride barrier를 지우고 질산을 이용한 wet oxidation과 PECVD를 이용하여 매우 얇은 tunnel oxide layer(1.4nm)를 성장시켰다. Poly-BSF 형성을 위해 PECVD 를 이용하여 a-Si:H를 증착 한 뒤 열처리를 통해 결정화 하여 BSF를 형성하였다. 열처리는 900℃, 60분 동안 진행 하였다. 그 다음 전면 emitter위에 passivation을 하기 위 해 PECVD를 이용하여 SiNx를 증착 하였다. 그리고 전극 형성을 위해 전면에 Ag/Al paste를 screen printing하였 고 소성을 진행하였다. 마지막으로 후면 전극을 증착하기 위해 Ag를 thermal evaporation을 이용하여 300nm 증 착 한 뒤 Al을 600nm 추가로 증착 하여 TOPCon cell을 완성하였다.

3. 결과 및 고찰

3.1 열처리를 이용한 BSF의 결정화

Raman peak는 520nm에서의 peak가 c-Si peak를 나 타내고 약 480nm는 a-Si의 peak를 나타낸다. Fig. 4는

Fig. 4. Raman-spectroscopy according to thermal process temperature. The process time was fixed to 30 minutes and the temperature was varied

공정 시간은 30분, a-Si 가스비는 SiH4:PH3:H2 = 1:1:9로 고정한 뒤 온도를 300℃~900℃로 가변한 결과 그래프이 다. 700℃ 미만에서는 a-Si peak가 나타났고 700℃ 이상 부터 crystalline peak가 나타나기 시작하였다. 300℃부 터 600℃ 까지는 a-Si:H의 충분한 결정화가 이루어지지 않은 것을 확인할 수 있다.

Fig. 5. (a) Raman spectroscopy process time (800°C). (b) Raman spectroscopy process time (900°C)

Fig. 5는 이전 실험에서 결정화가 잘 이루어진 온도인 800℃부터 900℃까지만 가변하고 시간을 30분부터 90분 까지 추가로 가변 하여 실험을 진행한 뒤 열처리 온도와 시 간에 따른 결정화도를 측정하였다. 그래프 상에서는 900℃ 에서 90분 동안 열처리를 하고 난 뒤 FGA공정을 진행한 sample이 가장 높은 raman peak를 나타냈다. 대체적으 로 열처리 온도가 높을수록, 열처리 시간이 길수록 결정화 도가 높은 경향을 보이는 것이 확인되었다.

3.2 Excimer laser를 이용한 BSF 결정화

Fig. 6은 XeCl excimer laser 이용하여 단일막 테스트 를 진행한 결과 그래프이다. 에너지 밀도는 390mJ/cm²~ 450mJ/cm²,a-Si:H의 두께는 20nm~40nm까지 각각 가 변 하였다. 가장 높은 carrier lifetime과 iV_∞를 달성한 조

Fig. 6. Carrier lifetime and implied VOC according to excimer laser energy density and a-Si:H thickness variation

건은 20nm, 430mJ/cm²로 FGA 공정 후 588μs, 697mV 로 측정 되었다. 대체적으로 poly-Si 의 두께가 얇을수록, 레이저의 에너지밀도가 높을수록 carrier lifetime과 implied Voc가 상승한 것으로 보인다.

3.3 고효율의 TOPCon solar cell 제작

Tunnel oxide layer를 형성하는 방법을 질산을 이용한 wet oxidation과 №20 gas를 이용한 plasma oxidation 을 서로 비교하여 실험을 진행하였다. Wet oxidation은 저온 공정(110°C) 이며 한 번에 여러 웨이퍼를 동시에 공정 이 가능하여 생산성이 매우 높다. Plasma oxidation은 한 면만 선택적으로 공정이 가능하기 때문에 양면 증착에 따 른 후속공정이 필요 없고 표면의 damage를 최소로 줄일 수 있다^[12].

Fig. 7과 Table 1은 plasma oxidation과 wet oxidation

Fig. 7. LIV graph of TOPCon solar cell using plasma oxidation and wet oxidation

Table 1. Efficiency data of TOPCon solar cell

Passivation Layer (Rear side)	J _{SC} (mA/cm²)	V _{OC} (mV)	FF (%)	Eff (%)
Chemical SiO _X (best of 36 cells)	40.94	633	74.8	19.41
Plasma SiO _x (best of 36 cells)	41.04	644	72.9	19.25

을 이용하여 제작한 TOPCon cell의 최고 효율 결과이다. Jsc와 Voc는 plasma oxidation을 이용한 셀이 너 높게 측 정되었지만 충진률과 효율은 chemical oxidation 을 이용 한 cell이 너 높게 측정되었다. 이를 바탕으로 chemical 용 액의 종류에 따라 형성되는 oxide layer의 특성을 분석하 고 최적의 조건을 적용하여 소자의 성능을 향상시킬 수 있 을 것이다.

4. 결 론

본 연구에서는 tunnel oxide passivation을 이용한 실 리콘 태양전지에 대해 서술하였다. BSF layer의 결정화를 위해 furnace annealing과 XeCl excimer laser annealing 을 이용하였다. Raman peak는 520nm에서의 peak가 결 정화도를 나타내는데 FA는 900℃, 90분 조건에서 가장 높 은 raman peak를 나타냈다. 대체적으로 열처리 온도가 높 거나 시간이 길면 결정화도가 높은 경향을 확인할 수 있었 다. ELA는 a-Si:H 두께 20nm. 에너지 밀도 430mJ/cm²에 서 588µs. 697mV의 가장 높은 carrier lifetime과 implied Voc가 측정 되었다. poly-Si의 두께가 얇을수록, laser의 에너지 밀도가 높을수록 더 높은 수치의 결과가 나타났다. 다음으로 tunnel oxide 성장 방법을 plasma oxidation과 wet oxidation 두 가지를 비교하여 TOPCon 태양전지를 제작하였는데 Jsc와 Voc는 plasma oxidation이, FF와 효 육은 wet oxidation 이 각각 더 높은 결과를 나타냈다. 이 를 토대로 최적화된 결정화 방법이나 oxidation 방법을 적용하여 TOPCon 태양전지를 제작한다면 높은 carrier lifetime과 implied Voc를 통해 고효율의 태양전지를 제작 할 수 있을 것이라 판단된다.

감사의 글

본 연구(No. 20153030012590)는 산업통상자원부(MOTIE) 와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다.

References

- [1] I. E. Agency (2014). Key world energy statistics.
- [2] Chen, C. W. (2016). Low cost high efficiency screen printed solar cells on Cz and epitaxial silicon (Doctoral dissertation, Georgia Institute of Technology).
- [3] Parida, B., Iniyan, S., and Goic, R. (2011). A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 15(3), 1625-1636.
- [4] Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. (2015). Solar cell efficiency tables (Version 45). 23(1), 1-9.vol. 22, pp. 1-9, 2014.
- [5] Zhao, J., Wang, A., Green, M. A. & Ferrazza, F. (1998).
 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 73(14), 1991-1993.
- [6] Aoki, T. Matsushita, T. Yamoto, H. Hayashi, H. Okayama, M. & Kawana, Y. (1975, January). Oxygendoped polycrystalline silicon films applied to surface passivation. In Journal of the Electrochemical Society (Vol. 122, No. 3, pp. C82-C82). 10 SOUTH MAIN STREET, PENNINGTON, NJ 08534: ELECTROCHEMICAL SOC INC.
- [7] Yablonovitch, E., Gmitter, T., Swanson, R. M. & Kwark,
 Y. H. (1985). A 720 mV open circuit voltage SiO x: c-Si: SiO x double heterostructure solar cell. Applied
 Physics Letters, 47(11), 1211-1213.
- [8] Richter, Armin, Martin Hermle, and Stefan W. Glunz. "Reassessment of the limiting efficiency for crystalline silicon solar cells." IEEE Journal of Photovoltaics 3.4 (2013): 1184-1191.
- [9] Y. J. Kim, S. B. Kim, Y. K. Kim, Y.H. Cho, C. K. Park and J. S. Yi. (2017). A Study on the Selective Hole Carrier Extraction Layer for Application of Amorphous/ crystalline Silicon Heterojunction Solar Cell. Journal of

KIEEME, 30(3), 192-197.

- [10] Feldmann, F. Bivour, M. Reichel, C., Hermle, M. & Glunz, S. W. (2013). A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF> 82%. In 28th European PV solar energy conference and exhibition.
- [11] Kawamoto, N., Matsuo, N., Abe, H., Anwar, F., Hasegawa, I., Yamano, K. & Hamada, H. (2004). Effect of hydrogen and thermal conductivity on nucleation of polycrystalline Si by excimer laser annealing. Japanese journal of

applied physics, 43(1R), 293.

- [12] M. H. Jeon, J. Y. Kang, C. M. Park, J. S. Song and J. S. Yi. (2016). A Review on Silicon Oxide Sureface Passivation for High Efficiency Crystalline Silicon Solar CellJournal of KIEEME, 29(6), 321-326.
- [13] R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, and C. R. Wronski (2003). Solar Energy Materials and Solar Cells, 78(1-4), pp. 143-180.