

[2017-6-FC-006]

나노섬유 제작기술을 적용한 저온형 고체산화물 연료전지 이중층 페로브스카이트 나노섬유 공기극의 특성 분석

진상범¹⁾ · 김근수²⁾ · 백승욱³⁾ · 김현석⁴⁾ · 강현일⁵⁾ · 최원석⁵⁾ · 김정현^{1)*}

Characterization of Layered Perovskite Nanofibers using Electrospinning for Cathode Materials of Low Temperature-operating Solid Oxide Fuel Cell

SangBeom Jin¹⁾ · Keunsoo Kim²⁾ · Seung-Wook Baek³⁾ · Hyun-Suk Kim⁴⁾ · Hyunil Kang⁵⁾ · Wonseok Choi⁵⁾ · Junghyun Kim^{1)*}

Received 14 March 2017 Revised 2 June 2017 Accepted 12 June 2017

ABSTRACT In this study, linear typed nanofibers were fabricated by controlling the variables with the great effects on nanofiber fabrication and the microstructural properties of fabricated nanofibers were investigated as a preliminary step to serve as a carrier, including SmBa_{0.5}Sr_{0.5}Co₂O_{5+d}(SBSCO) cathode materials for low temperature-operating solid oxide fuel cells (LT-SOFCs). Beadless nanofibers were produced at a nozzle to substrate distance of at least 9 cm when using the electrospinning process. The diameter of the nanofibers increased with increasing flow rate, and the diameter of the nanofibers also increased at a nozzle to substrate distance of 9 cm or more. As the humidity increased, collapse of the nanofibers was observed. The fabricated nanofibers, as a carrier for SBSCO, were decomposed in three parts: a temperature range of RT~340°C, 340°C~454°C, and higher than 454°C. No further weight losses were observed at temperatures higher than 625°C. The lowest area specific resistance (ASR) was observed when SBSCO was used in the nanofiber type and the SBSCO nanofiber exhibited an ASR value of 0.85 Ω .cm² at 550°C.

Key words Low temperature-operating solid oxide fuel cell(저온형 고체산화물 연료전지), cathode(공기극), nanofiber(나노 섬 유), electrospinning(전기방사), microstructure(미세구조)

- Department of Advanced Materials Science and Engineering, Hanbat National University
- 2) Department of Engine Research, Korea Institute of Machinery and Materials
- Center for Energy Materials Metrology, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS)
- 4) Department of Materials Science and Engineering, Chungnam National University
- 5) Department of Electrical Engineering, Hanbat National University

*Corresponding author: jhkim2011@hanbat.ac.kr Tel: +82-42-821-1239 Fax: +82-42-821-1592

1. 서 론

고체산화물 연료전지(Solid Oxide Fuel Cell, 이하 SOFC) 는 연료극, 전해질 및 공기극이 세라믹으로 구성된 연료전 지로서 연료의 다양성 측면과 함께 고온에서 운전되는 특 징으로 효율이 높아 친환경 신재생에너지로 주목받고 있 다. 하지만 고온의 온도조건은 SOFC의 전극 및 전해질의 활성도를 높이는 장점이 있는 반면 금속재료의 내구성 및 산화에 따른 문제가 발생하고 있다.^[1,2] 이러한 문제점들을

Copyright © 2017 by the New & Renewable Energy

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

해결하기 위해서 중·저온 온도영역대로 작동온도를 낮추기 위한 연구가 진행되고 있다.^[3,4]

하지만 중·저온 온도영역 범위에서 SOFC가 운전될 경 우 전극의 분극 저항 증가에 따른 성능저하가 매우 심각하 기 때문에 우수한 전력 밀도를 유지하기 위해서 새로운 공 기극 물질 개발 연구가 진행되고 있다.^[5,6]

최근의 본 연구자는 영국 세인트 앤드류즈 대학의 John Irvine 그룹과의 공동연구를 통해서 LnBa_{0.5}Sr_{0.5}Co₂O_{5+d} 의 이중층 페로브스카이트 구조를 보이는 산화물에서 lanthanide을 Sm으로 치환한 SmBa_{0.5}Sr_{0.5}Co₂O_{5+d}(SBSCO) 와 Ce_{0.9}Gd_{0.1}O_{2-d}(CGO91)을 이용한 복합공기극에서 600 및 700°C에서 약 0.102와 0.013Ωcm²의 우수한 면적비저 항 특성을 보이는 중·저온형 SOFC 공기극 물질을 개발하 였다.^[7]

공기극 물질을 포함한 다양한 전극물질을 형성하는 방법 중 하나인 나노섬유의 경우 높은 비표면적으로 인해 응용 가능한 분야가 다양하다는 장점이 있다. 특히 나노섬유를 제작할 수 있는 전기 방사법은 나노 미터 단위의 아주 작은 물질을 다루는 기술이기 때문에 기존에 보여주었던 소재의 물성과는 다른 특성을 보여주고 있다.^[8] 이러한 전기 방사 법을 이용하여 최근 SOFC의 공기극 물질을 제작하는 시도 가 있으나 SBSCO와 같은 이중층 페로브스카이트에 관한 연구는 이루어지고 있지 않다. 따라서 본 연구에서는 SBSCO 를 저온 영역대에서의 SOFC 공기극 물질로 적용하기 위하 여 전기방사법을 이용하여 SBSCO를 담지할 수 있는 나노 섬유 지지체를 제작하였다.

이와 함께 본 연구에서는 저온형 SOFC의 공기극 적용을 위해서 전기 방사를 이용하여 SBSCO를 담지할 수 있는 나노 섬유 제작 변수들을 조절하여 직선 형태를 유지하는 SBSCO 담지용 나노섬유 제작을 위한 제작 최적 조건을 확립하고 최적의 직선형태의 SBSCO 담지용 나노섬유 제작 조건을 제시하였다. 또한 열처리에 따른 SBSCO 섬유의 미세구조 와 함께 면적비저항의 전기화학 특성을 평가하였다. 따라 서 본 연구는 고분자 물질을 사용한 SOFC 공기극 물질의 담지체의 제작 변수에 따른 미세구조를 파악하여 최종적으 로 직선형태의 공기극 물질의 삼상경계면을 최대한 확보할 수 있는 방법을 제시하였으며 이를 증명하는데 그 목적이 있다. 참고로 본 연구에서 언급하고 있는 담지체는 전기화 학분야에서 전자 및 이온을 전달 할 수 있는 경로를 제공하 는 물질이 아니라 SBSCO 공기극 물질을 직선 또는 일정한 형태로 제작하기 위한 목적으로 적용되었다.

2. 실험방법

2.1 전기 방사

나노섬유 제작에 사용된 용매로 에탄올을 사용하였으며 용질로서는 실험에 사용되는 폴리머의 분자량에 따라서 나 노섬유의 길이에 차이를 보이기 때문에 높은 분자량을 보 이는 Polyvinylpyrrolidone(PVP, M.W. 1,300,000, Sigmaaldrich)를 이용하였다. PVP와 에탄올을 1:10의 중량비로 계산하여 제작하였으며 교반기를 통하여 PVP를 에탄올에 용해 시켰다.

전기 방사에 사용된 장비는 시린지(Norm-Ject, 10ml), 시린지 노즐(30G), 시린지 펌프, 변압기(코리아 스위칭)을 사 용하여 전기 방사를 진행하였다. 제작된 용액을 시린지에 넣고 30G 노즐을 연결한 후 시린지 펌프와 연결된 시린지 노즐에 +극을 연결하고 포집판에 -극을 연결하여 방사를 진행하였다. 구체적인 실험 개략도는 Fig. 1에 정리하였다.

나노섬유 제작에 영향을 미치는 거리의 경우 Fig. 1에서 제시된 실험개략도에서 노즐과 기판과의 거리를 1cm, 3cm, 5cm, 7cm 및 9cm로 조절하였다. 또한 유량은 전술했듯이 시린지 펌프를 이용하여 PVP가 포함된 용액을 10µl/min, 30µl/min 및 50µl/min로 변화를 주어 공급하였으며 습도 는 상대습도를 이용하여 30%, 40%, 50%, 60%, 70% 및 80%로 조절하였다.

Fig. 1. Schematic of electrospinning apparatus

SBSCO 나노섬유에 포함되어 있는 이중층 페로브스카이 트인 SBSCO는 고상합성법으로 단일상을 합성하였으며^[7] PVP와 SBSCO 혼합하여 SBSCO 나노섬유를 제작하였다.

2.2 미세구조 분석 및 입도 분석

제작된 나노섬유의 미세구조를 확인하기 위한 미세구조 분 석은 Energy-dispersive spectroscopy(EDS) 분석과 연 동되어 있는 Hitachi사의 FE-SEM(Model:S-4300)을 이 용하였다. 나노섬유의 입도 분석은 Horiba사의 LA-950V2 를 이용하여 분석하였다.

2.3 열분석

2.4 전기화학분석

제작된 나노섬유의 열분석특성을 확인하기 위한 Thermogravimetric Analysis(TGA)-Differential Scanning Calorimetry(DSC) 분석은 TGA와 DSC 분석이 동시에 가 능한 Mettler-toledotk 사의 TGA/DSC1/1600 LF를 이 용하였다. 상온에서 1000°C까지의 온도 구간을 분당 5°C 의 승온속도를 유지하며 실험을 진행하였다.

Area specific resistance(ASR)을 측정하기 위해 반

전지 시스템에 적용되는 전해질은 Ceo.gGdo.1O2-d(CGO91, Praxair Specialty Ceramics)를 이용하여 1400°C에서 약 3시간 소결하였다. 파우더 형태의 SBSCO 공기극과 섬유 형태의 SBSCO 공기극은 Alpha-terpineol과 아세톤으로 구성된 잉크를 이용하여 제작하였다. 소결된 CGO91 전해 질에 스크린프린터를 이용하여 공기극을 도포한 후 1000°C 에서 1시간 열처리를 실시하였다. ASR을 측정하기 위한 전 기화학실험의 경우 Solatron 1260 장비를 이용하여 1MHz 에서 0.01Hz의 주파수 대역의 Electrochemical Impedance Spectroscopy(EIS) 분석을 실시하였다.

3. 결과 및 고찰

3.1 기판과 노즐거리에 따른 나노섬유 특성

기판과 노즐거리에 따른 나노섬유의 미세구조는 Fig. 2 에서 정리하였다. Fig. 2(a)에서 Fig. 2(c) 사이의 결과를 보면 기판의 거리가 1~5cm를 유지할 경우 SBSCO 담지용 나노섬유가 일직선의 형태로 방사되지 않았으며 최종적으 로 구슬형태의 비드가 생성되는 것을 알 수 있다. 이것은 전기 방사시 노즐의 팁에 맺혀 있는 용액이 전자기장에 의

하여 기판으로 방사 될 때 기판까지 도달하는 거리가 너무 짧아 전기방사를 위한 충분한 연신거리가 확보되지 못한 것으로 판단할 수 있다.

반면 Fig. 2(d) 및 Fig. 2(e)와 같이 충분한 연신거리가 확보된 경우 구슬형태의 비드가 아닌 직선형태의 나노섬유 가 생성되었다. 구체적으로 Fig. 2(d)에서 보여주는 것과 같이 용액이 연신 할 수 있는 거리가 최소 7cm로 증가할 경 우 직선형태의 나노섬유가 제작되는 것을 알 수 있다.^[9] 하 지만 Fig. 2(d)에서 보여주는 미세구조 결과 Fig. 2(a)~(c) 에서 발견된 형태인 큰 비드는 존재하지 않지만 두께가 일 정하지 않고 그물형태로 부분적으로 뭉쳐있는 모습으로 방 사가 진행된 것을 알 수 있다. 또한 부분적인 비드가 존재 하는 것을 알 수 있다. 반면 Fig. 2(e)에서는 연신 거리가 9cm로 충분한 거리를 유지할 경우 나노섬유의 두께가 일 정하며 직선형태의 미세구조를 형성하는 것을 알 수 있다. 따라서 노즐과 기판 사이의 거리에 따른 미세구조특성을 비교한 결과 전기방사를 진행할 때 9cm 이상의 충분한 연 신 거리를 유지할 경우 일정한 직선 형태의 균일한 나노섬 유를 제작 할 수 있다.

3.2 유량 및 방사거리에 따른 나노섬유 특성

Fig. 3의 (a), (b) 및 (c)의 결과는 초기 10ul/min의 유 량에서 9, 12 및 15cm 거리의 변화를 주어 실험한 결과이 며 Fig. 3의 (d), (e) 및 (f)의 결과는 30ul/min의 유량에 서 9, 12 및 15cm 거리의 변화를 주어 실험한 결과이다. 또 한 Fig. 3의 (g), (h) 및 (i)의 결과는 50ul/min의 유량에 서 9, 12 및 15cm 거리의 변화를 주어 실험한 결과를 정리 하였다. 본 결과에서 모든 나노섬유는 모두 직선 형태로 생

성된 것을 알 수 있다.

구체적인 전기 방사 거리와 유량에 따른 나노 섬유의 평 균 직경은 Table 1에서 정리하였다. SEM 분석 및 입도 분석 결과 전기방사를 통해서 제작된 나노섬유의 경우 Fig. 3(a) 에서 확인 할 수 있듯이 9cm의 거리에서 유량 10ul/min로 인가한 경우 나노섬유의 평균 직경은 약 50~300nm의 범위 에서 존재하고 있으며 이때에 약 200nm의 직경을 보이는 나노섬유가 40%로 가장 큰 비율을 차지하고 있다. 또한 동 일한 유량 상태에서 거리를 12cm 및 15cm로 증가시킨 경우 (Fig. 3(b) 및 (c)) 나노섬유의 평균 직경은 약 50~300nm 의 범위에서 존재하고 있으며 12cm의 거리 상태에서는 약 150, 250 및 300nm의 대표 직경 값을 보이고 있으며 15cm 의 거리에서는 200, 250 및 300nm의 평균 직경 값을 보이 고 있다. 또한 거리가 증가할 경우 평균 직경이 증가하는 것을 알 수 있다. Fig. 3의 (d), (e) 및 (f)의 경우 유량을 30ul/min로 증가한 경우 9cm의 거리를 유지한 상태에서는 나노섬유의 평균 직경은 약 50~300nm의 범위에서 300nm 의 직경을 보이고 있으며 12cm의 거리를 유지할 경우 200nm, 250nm 및 300nm의 직경을 보이는 나노섬유가 분산되어 존재하는 것을 알 수 있다. 반면 Fig. 3의 (f)에서 확인 할 경우 유량을 30ul/min의 상태에서 15cm의 거리를 유지할 경우 50, 150 및 300nm의 직경을 갖는 나노섬유가 존재하 는 것을 알 수 있다. 유량을 30ul/min를 공급하는 상태에 서 거리 증가에 따른 직경은 9cm 및 12cm의 경우에 전체 적으로 증가하지만 15cm의 경우는 상대적으로 50nm의 직 경을 보이는 나노섬유와 300nm의 직경을 보이는 나노섬 유가 혼재되어 있는 것을 알 수 있다.

마지막으로 유량을 50ul/min로 증가시킨 경우 10ul/min 및 30ul/min에서 발생하는 직경의 범위에 비교해서 100nm 에서 600nm의 범위로 증가했으며 이때 9cm의 거리를 유 지할 경우 300nm의 대표 직경을 보이고 있으며 12cm의 경우 300 및 400nm의 직경을 유지하고 있다. 또한 15cm 를 유지할 경우 400 및 500nm의 직경을 보이고 있다. 특 히 Fig. 3의 (g), (h) 및 (i)의 경우 50ul/min 유량상태에 서 거리가 증가할수록 상대적으로 직경이 큰 나노섬유가 생성되는 것을 알 수 있다. 또한 이 경우 나노섬유의 평균 직경은 전기 방사 거리에 비례하는 것을 알 수 있다.

동일한 거리 상태에서 유량을 증가시킨 경우(Fig. 3의 (a), (d) 및 (g), Fig. 3의 (b), (e) 및 (h), Fig. 3의 (c), (f) 및 (i)) 나노섬유의 평균 직경은 유량의 증가량에 비례하는 것을 알 수 있다. 따라서 Fig. 3의 결과를 통하여 직선형태 의 나노섬유의 평균 직경은 유량의 증가량과 전기 방사 거 리에 비례하는 것을 알 수 있다.

Fig. 3에서 제시된 결과를 통하여 다음과 같은 나노섬유 의 특성을 알 수 있다. 즉 유량이 증가하게 되면 전기 방사 에 의하여 제작되는 나노섬유의 두께는 증가하며 유량이 일정량 이상 공급이 되어야 만이 균일한 지름을 갖는 나노 섬유를 제작할 수 있다는 것을 알 수 있다. 동시에 동일한 유량공급 시 노즐과 팁 간의 거리 증가에 따른 나노섬유의 두께는 대부분 비례하는 특성을 확인하였다. 제작과정 시 일정 거리 이상 멀어지게 되면 나노섬유가 부분적으로 불 균일하게 방사되는 특성을 보여주었다. 이는 나노섬유 제 작 시 용액의 방사는 순수한 전압의 힘이 아닌 전기적 반발 력에 의한 전기장에 의한 것으로 생각되며 거리가 너무 멀 어 지면 인가되는 전기장의 힘이 상대적으로 약하게 되어 불균일한 방사기 진행되는 것으로 보인다.

또한 10ul/min에서 9cm의 조건에서 나온 결과를 볼 때 상대적으로 적은 유량에서 방사된 용액에 인가되는 전기장 의 힘이 강하게 되면 방사되는 용액의 분출이 하나가 아닌 여러 갈래로 방사되는 현상 또한 발견되었다.

Fig. 4는 Fig. 3에서 확인한 입자크기 분석결과를 이용 하여 거리 및 유량에 따른 입자크기를 평균값으로 정리한

Distance between nozzle and substrate (cm)	Average diameter of nanofibers (nm)		
	10 µl/min	30 µl/min	50 µl/min
9	200	150, 250	200
12	300	200, 300	50, 300
15	300	300, 500	400, 500

결과이다. X축이 노즐-기판사이의 거리 Y축이 나노섬유의 직경이 되며 유량에 따라서 분류를 진행하였다. 유량이 증 가함에 따라서 나노섬유 두께가 증가하는 경항성을 파악할 수 있다. 이는 체적 전하밀도에 따른 영향으로 노즐 끝에 공급되는 전하의 양과 용액의 공급 속도, 기판 까지의 대전 된 이온의 회수비율에 의하여 빠르게 방사가 진행되어 나 노섬유의 직경이 증가하게 된다.^[10]

또한 거리가 증가할 경우 용액의 연신 거리 증가로 인한 직경의 감소를 예측했으나 거리 증가에 따른 전기장의 감 소로 인하여 12cm 이하의 경우 직경이 증가하는 것을 확인

하였으며 15cm 이상의 거리에서의 직경 감소는 전기장 감 소에 의하여 노즐에 공급된 용액이 모두 분출되지 못하고 노즐에 남아있던 용액의 일부가 응고 하면서 보조 분출이 형성되어 주 분출 용액과 보조 분출 용액의 방사에 따른 표 준편차의 증가로 인한 영향으로 판단할 수 있다.

3.3 습도에 따른 나노섬유 특성

Fig. 5는 습도 변화에 따른 미세구조의 변화를 SEM으로 분석한 결과이다. 실험에 사용된 수용성 폴리머인 PVP를 사용하여 전기방사를 진행할 경우 습도에 따라서 미세구조 의 변화가 발생하게 된다.

이러한 습도의 변화의 따른 미세구조 변화를 확인하기 위하여 Fig. 5(a)에서 Fig. 5(f)까지 각 습도 30~80%까지 각 10%정도의 습도 차이를 보이는 공간에서 실험을 진행하 였다.

Fig. 5(a)의 습도 30% 상태에서 방사된 SEM 사진의 경 우 나노섬유의 형태가 직선 형태로 방사되는 것을 알 수 있 다. 이후 습도가 증가하여 40%정도인 경우 그물형태로 변 화하며 습도가 더 높아지면 용매가 덜 증발된 상태에서 기 판에 도달하게 되면서 기판에 직선형태의 나노섬유 형태로 형성되지 않고 필름의 형태로 기판에 최종 형성된다.

Fig. 5. Microstructural properties of fiber fabricated with electrospinning technique with respect to the humidity (a) 30%, (b) 40%, (c) 50%, (d) 60%, (e) 70% and (f) 80%

따라서 전기 방사는 습도에 의한 미세구조의 변화를 보이 게 되는 것을 알 수 있다. 이러한 현상이 발생하는 원인은 전기방사 시 주변의 습도가 증가할 경우 방사되는 수용성 폴리머 수용액의 농도가 상대적으로 감소하고 이로 인하여 점도가 감소되기 때문으로 판단 할 수 있다. 또한 습도의 변 화는 전기 방사되는 용액의 속도를 증가시켜 Whipping이 일어나는 시간을 감소시켜 나노섬유 제작에 영향을 주게 되는 것을 알 수 있다.^[11]

3.4 나노섬유의 열분해 특성

나노섬유를 이용하여 Thermogravimetric Analysis(TGA) 분석에 의한 온도-무게 변화량 결과는 Fig. 6에 제시되어 있다. 동시에 Differential Scanning Calorimetry(DSC) 분석을 in-situ로 진행하여 열분해 특성을 고찰하였다.

Fig. 6에서 온도증가에 따른 무게 변화는 상온에서 340°C 의 온도구간, 340~454°C의 온도 구간 및 454°C 이상의 온도구간의 3부분으로 분리할 수 있다.

상온에서 340°C의 온도구간에서 발생하는 무게 감소 중 100°C에서 발생하는 약 10wt%의 무게 감소는 나노섬유 내 에 존재하는 수분의 증발에 의한 것으로 판단되며 DSC의 결과 또한 100°C에서의 미세한 흡열픽을 확인 할 수 있다. 100°C~260°C의 온도구간에서는 약 1wt% 내외의 미미한 무게 감소가 발견되었으며 이는 나노섬유에 존재하는 불순 물의 휘발로 생각할 수 있다. 260°C~340°C의 온도구간에 서는 약 6wt%의 무게 감소가 발생했으며 특히 340°C의 온 도에서 발열픽이 발생하였다. 따라서 260°C~340°C의 온

Fig. 6. Thermogravimetric analysis (TGA) and differential Scanning Calorimetry (DSC) results of as- nanofibers under air condition with increasing temperature

도 구간은 PVP의 결합고리 중 부사슬(side chain)의 분해 에 의한 결과로 판단할 수 있다.^[12] 340~454°C의 온도구 간 중 396°C에서 발열픽을 동반한 급격한 무게 감소가 발 생하기 시작하며 453°C에서도 발열픽이 존재한다. 또한 340~454°C의 온도구간에서 발생한 전체 무게 감소는 52wt% 로 판단되는 대부분의 무게 변화를 확인 할 수 있다. 이러 한 급격한 무게 감소와 발열픽이 발생하는 온도구간은 PVP 의 주사슬(main chain)의 분해로 판단할 수 있다.^[13]

추가로 625°C에서 발생하는 발열픽은 PVP의 잔류성분 이 분해되는 과정이며 625°C이후의 온도범위에서는 더 이 상의 중량감소는 발견되지 않았다. 따라서 TGA-DSC분석 결과에 따라서 SBSCO를 담지하는 나노섬유의 주성분인 PVP는 625°C 까지 열처리할 필요가 있으며 초기 200°C까 지의 온도 및 200°C에서 625°C의 온도구간의 경우 저속으 로 온도를 올려 안정성을 확보해 주어야 하는 것을 알 수 있 다. 본 전기방사로 제작한 SBSCO 담지체용 나노섬유의 경 우 625°C 까지 열처리를 통해 나노섬유를 제거할 수 있으 며 이는 본 연구의 핵심인 저온형 SOFC의 공기극을 담지 하여 직선형태의 최종 SBSCO 공기극을 제조하기 위한 목 적으로 적용될 수 있다.

즉 일반적인 SOFC의 공기극의 경우 스크린 프린팅 이후 1000°C에서 열처리를 하기 때문에 본 연구에서 확인한 전 기방사 용액의 열처리 구간에 해당되는 625°C의 온도는 추 후 적용될 SBSCO의 열처리 조건에 영향을 받지 않으며 직 선형태의 SBSCO 나노섬유를 제작할 수 있을 것으로 판단 할 수 있다.

3.5 SBSCO 나노섬유

Fig. 7(a)는 전술한 조건을 이용하여 10wt%의 PVP가 혼합된 용액에 SBSCO 공기극을 24시간 교반처리한 후 제 작한 직선형태의 SBSCO 나노섬유의 미세구조를 나타내고 있다. Fig. 3에서 제시한 미세구조와 달리 나노섬유 내부 에 SBSCO 파티클이 존재하고 있으며 약 1µm 내외의 두께 를 가지고 있는 것을 알 수 있다. 이를 열처리한 Fig. 7(b) 의 경우 담지용 나노섬유는 제거되었으며 담지용 나노섬유 에 존재하고 있는 SBSCO는 직선 형태를 유지하는 것을 알 수 있다.

Fig. 7. Microstructural properties of SBSCO fiber fabricated with electrospinning technique at (a) room temperature and (b) heat-treated at 550°C.

Fig. 8. Impedance plots of two sample sintered at 1000°C for 1 h measured at 550°C. The in-set numbers denote the logarithm of the measuring frequency.

3.6 SBSCO 나노섬유를 이용한 면적비저항 특성 분석

Fig. 8은 일반적인 파우더 형태의 SBSCO를 이용한 Area specific resistance(ASR)와 SBSCO나노섬유를 이용하여 550°C에서 측정한 ASR을 비교한 결과를 정리하였다.

파우더 형태의 SBSCO는 약 1.15Ω.cm²의 ASR 값을 보이 고 있으며 본 연구자에 의해서 보고된 CGO91 전해질을 기 반으로 측정된 ASR 값과 거의 동일한 값으로 측정되었다.^[14]

나노섬유로 제작한 SBSCO 공기극은 동일한 온도에서 0.85Ω.cm²의 ASR 측정결과를 보이고 있다. 따라서 SBSCO 나노섬유를 저온형 SOFC의 공기극으로 적용할 경우 더 낮 은 공기극의 분극저항을 확인 할 수 있다.

4.결론

전기 방사 공정은 용액, 장비 및 환경요인 등 크게 3가지 의 영향을 크게 받게 된다. 본 연구에서는 나노섬유 제작에 영향을 주는 변수를 조절하여 직선 형태의 나노섬유를 제 조하였으며 이에 따른 전기화학특성을 비교하였다. 거리와 유량에 따른 나노섬유의 변화를 SEM을 통하여 분석 할 경 우 전기방사거리는 최소 9cm이상의 거리에서 비딩이 없는 직선형태의 나노섬유가 제조 되는 것을 확인하였다. 또한 유량의 증가에 따라 나노섬유의 직경이 증가하였으며 10 ul/min 및 50ul/min에서 9cm, 12cm의 거리를 유지할 경 우 나노섬유의 직경이 증가하였다. 습도가 증가할수록 나 노섬유의 붕괴가 확인되었으며 습도가 30% 이하일 경우 비 딩이 없는 직선 형태의 나노섬유를 제조 할 수 있다. PVP 기반의 나노섬유의 경우 340°C의 온도구간, 340~454°C 의 온도 구간 및 454°C 이상의 온도구간의 3부분으로 분리 할 수 있으며 625°C 이후의 온도범위에서는 더 이상의 중 량 감소는 발견되지 않았다.

SBSCO가 포함된 나노섬유를 이용하여 ASR을 측정한 결과 일반적인 파우더 형태의 SBSCO 공기극에 비해서 낮 은 값을 확보하였으며 본 연구에 적용된 SBSCO 나노섬유 는 저온형 SOFC의 공기극 물질로 적용될 수 있다.

Acknowledgment

본 연구는 2016년도 국립 한밭대학교 교내학술연구비의 지원을 받아 수행되었습니다. 이에 감사드립니다.

References

- Lutz A. E., Larson R. S., Keller J. O., 2002, "Thermodynamic comparison of fuel cells to the Carnot cycle", Int. J. Hydrogen Energy, 27, 1103-1111.
- [2] Steele B. C. H., Heinzel A., 2001, "Materials for fuelcell technologies", Nat., 414, 345-352.
- [3] Hashimoto S., Kammer K., Larsen P., Poulsen F., Mogensen M., 2005, "A Study of Pr_{0.7}Sr_{0.3}Fe_{1-x}Ni_xO_{3-δ} as a Cathode Material for SOFCs with Intermediate Operating Temperature", Solid State Ionics, 176, 1013-1020.
- [4] Choi J. H, Lee T., Park T. S., Yoo Y. S., 2009, "Performance of Single Cell with Anode Functional

Layer for SOFC", New. Renew. Ener., 5, 11-17.

- [5] Steele B. C. H., Bae J. M., "Properties of La_{0.6}Sr_{0.4}Co_{0.2} Fe_{0.8}O_{3-x} (LSCF) double layer cathodes on gadoliniumdoped cerium oxide (CGO) electrolytes", 1998, Solid State Ionics, 106, 255-261.
- [6] Shao Z., Haile S. M., 2004, "A high performance cathode for the next generation solid-oxide fuel cells", Nat., 431, 170-173.
- [7] Kim J. H., Cassidy M., Irvine J.T.S., Bae J.M., 2010, "Electrochemical investigation of composite cathodes with SmBa_{0.5}Sr_{0.5}Co₂O_{5+δ} cathodes for intermediate temperature-operating solid oxide fuel cell", Chem. Mater., 22, 883-892.
- [8] Li M., Liu L.B., Xiong Y.P., Liy X. T., Nsabimana A., Bo X. J., Guo L. P., 2015, "Bimetallic MCo (M=Cu, Fe, Ni, and Mn) nanoparticles doped-carbon nanofibers synthetized by electrospinning for nonenzymatic glucose detection", Sens. Actuators, B, 207, 614-622.
- [9] Hohman M, M., Shin M., Rutledge G., Brenner M. P., 2001, "Electrospinning and electrically forced jets. I. Stability theory", Phys. Fluids, 13, 2201-2220.

- [10] Reneker D.H., Kataphinan W., Theron A., Zussman E., Yarin A.L., 2002, "Nanofiber garlands of polycaprolactone by electrospinning", Polym., 43, 6785-6794.
- [11] Nezarati R.M., Eifert M.B., Cosgriff-Hernandez E., 2013, "Effects of humidity and solution viscosity on electrospun fiber morphology", Tissue Eng. Part C, 19, 810-819.
- [12] Lee Y.-I., Cho Y.-H., 2012, "Synthesis of Silver Nanofibers Via an Electrospinning Process and Two-Step Sequential Thermal Treatment and Their Application to Transparent Conductive Electrodes", Kor. J. Mater. Res., 22, 562-568.
- [13] Joo Y.-H., Nam J.-H. Nam, Cho J.-H., Chun M.-P., Kim B.-I., Ko T.-G., 2009, "Preparation and Characterization of NiZn-Ferrite Nanofibers Fabricated by Electrospinning Process", J. Korean Ceram. Soc., 46, 74~80.
- [14] Kim J. H., Cassidy M., Irvine J.T.S., Bae J.M., 2009,
 "Advanced electrochemical properties of LnBa_{0.5}Sr_{0.5}Co₂O₅₊₈ (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC",
 J. Electrochem. Soc., 156(6), B682~B689.